EXP-FL-XCAN-ADV

Italiano

I/O CAN Master controller & Scheda di comunicazione Fast Link ADV Firmware 6.0.0 e superiore

Versione documento	Descrizione	Data
V1.0	Rilascio prima versione RC	Ottobre 2012
V1.1	Modifiche DLG and TNZ	26 Ottobre 2012
V1.2	Corretto schema punto 3)	11 Marzo 2013
V2.0	Aggiunto Bi-directional fast link	7 Feb 2014
V2.1	Cap. 2, agg.note CAN board	28 maggio 2014
V2.2	pag 14: tradotta procedura "Baud range change"	9-2-2015
V2.3	Cap. 1 aggiunta Avvertenza Cap. 9.1 aggiunto TX/RX nei disegni	13-12-2017

Vi ringraziamo per avere scelto questo prodotto Gefran.

Tutti i diritti riservati.

Saremo lieti di ricevere all'indirizzo e-mail: techdoc@gefran.com qualsiasi informazione che possa aiutarci a migliorare questo manuale.

Prima dell'utilizzo del prodotto, leggere attentamente il capitolo relativo alle istruzioni di sicurezza.

Durante il suo periodo di funzionamento conservate il manuale in un luogo sicuro e a disposizione del personale tecnico.

Gefran spa si riserva la facoltà di apportare modifiche e varianti a prodotti, dati, dimensioni, in qualsiasi momento senza obbligo di preavviso.

I dati indicati servono unicamente alla descrizione del prodotto e non devono essere intesi come proprietà assicurate nel senso legale.

Sommario

1	Introduzione	. 4
2	Introduzione funzionalità CAN Master	. 5
3	Descrizione sistema	. 6
4	Descrizione cavo per collegamento CAN	11
5	Parametri per EXP-FL-XCAN-ADV	12
6	Gestione software del modulo esterno di I/O CANopen	13
6.1	Stati della comunicazione	14
7	Configurazione custom del modulo tramite SDO	15
-	7.1 Pagina di Configurazione	16
8	Formato file configurazione SDO	20
ł	3.1 Impostazione parametri comunicazione CANopen master del drive	20
9	Fast link - Introduzione	21
9	0.1 Connettore FastLink	24

1 Introduzione

Attraverso la scheda di espansione EXP-FL-XCAN-ADV è possibile incrementare la quantità di I/O esterni gestibili dal drive ADV200 (funzionalità CAN Master). Attraverso la comunicazione Fast Link è possibile connettere più drive tra loro per poter eseguire processi di sincronizzazione.

Riferimento incrociato HW/FW comunicazione Fast Link

Revisione hardware EXP-FL	Fast Link monodirezionale	Fast Link bidirezionale
V1.02	SÌ	NO
V1.03	SÌ	SÌ

Firmware drive ADV200	Fast Link monodirezionale	Fast Link bidirezionale
V6.0.0	SÌ	NO
≥ V7.0.0	SÌ	SÌ

Attenzione: pericolo di danni oculari permanenti che si può verificare quando si utilizzano apparecchiature di trasmissione ottica. Questo prodotto emette luce intensa e radiazioni invisibili. Non guardare nei connettori del modulo o nei connettori del cavo a fibre ottiche.

2 Introduzione funzionalità CAN Master

La Scheda di regolazione standard del drive ADV200 gestisce i seguenti I/O:

Ingressi digitali	Uscite digitali	Uscite digitali relè	Ingressi analogici	Uscite analogiche
1 +5	2	2	2	2
		(2 contatto NO)	Ingressi in tensione e corrente. (selezione con switch + parametro)	Uscite in tensione. La seconda anche in corrente. (selezione con switch + parametro)

Alcune applicazioni richiedono una maggiore quantità di I/O che il drive dovrà gestire. Con la scheda EXP-FL-XCAN-ADV (inserita nello **slot di espansione 1** del drive) è possibile, tramite interfaccia CAN *(CANopen with profile "DS401 Device for generic IO modules")*, connettere un dispositivo I/O esterno.

Un solo dispositivo I/O esterno può essere utilizzato.

La comunicazione è realizzata utilizzando il profilo "DS401 Device profile for generic IO modules".

Il massimo numero di I/O gestibili sono i seguenti:

- 64 Ingressi Digitali (sample time = 8ms) (16 DI attraverso il solo fw standard)
- 64 Uscite Digitali (sample time = 8ms) (8 DO attraverso il solo fw standard)
- 8 Ingressi Analogici (sample time = 8ms) (2 AI attraverso il solo fw standard)
- 8 Uscite Analogiche (sample time = 8ms) (2 AO attraverso il solo fw standard)

Un numero limitato di I/Os esterni sono gestiti dal firmware standard del drive. Attraverso l'applicazione MDPLC è possibile raggiungere il numero di I/O indicato sopra

Nota ! Quando si utilizza la funzione CAN MASTER, non è possible gestire altre schede di comunicazione opzionali "EXP-CAN/DN-ADV".

3 Descrizione sistema

La scheda di espansione scheda EXP-FL-XCAN-ADV viene inserita nello slot 1 del drive e deve essere collegata tramite cavo CAN al modulo esterno di comunicazione.

I moduli esterni gestiti devono poter comunicare tramite CANopen ad un baudrate di 500kbps.

L'indirizzo del modulo esterno di comunicazione deve essere impostato a 1.

L'ADV200 può gestire un solo slave e utilizza il profilo "DS401 Device profile for generic IO modules". Come sistema di riferimento viene utilizzato il dispositivo GILOGIK II Gefran (ma può essere utilizzato un altro dispositivo equivalente correttamente configurato) sul quale vengono inseriti il modulo di comunicazione slave e i moduli I/O.

Al momento sono disponibili i file di configurazione per le seguenti interfaccia CAN:

- Gefran R-GCANs
- Wago 750-347 ECO CANopen (sample time = 16ms)
- Beckhoff BK5110 (sample time = 16ms)

La comunicazione tra drive e modulo esterno si basa su 4 PDO-RX e 4 PDO-TX. La dimensione di un PDO è:

64 bit	8 Uint8	4 Uint16	2 Uint32

Le informazioni scambiate nei PDO sono:

1 PDO-RX	64	Digital Input (bit)
2 PDO-RX	8	Analog Input (Uint16)
1 PDO-RX		Free

1 PDO-TX	64	Digital Output (bit)
2 PDO-TX	8	Analog Output (Uint16)
1 PDO-TX		Free

Il modulo di comunicazione slave esterno riconosce i moduli I/O installati in ordine di slot da sinistra a destra ed esegue la mappatura nello stesso ordine gli I/O rilevati nel corretto PDO.

Sono previste anche configurazioni in cui gli IO installati non sono sufficienti a saturare tutti i PDO oppure gli IO installati eccedono la dimensione prevista dai PDO. In entrambi i casi il sistema permette di lavorare. Se gli IO installati non sono sufficienti a saturare i PDO il sistema lavora con le risorse effettivamente presenti nei moduli IO. Se gli IO installati saturano i PDO il sistema lavora con la massima quantità ammessa.

Con il parametro 5482 External IO info è possibile conoscere la quantità di IO presenti. Fare riferimento al paragrafo relativo del manuale del drive ADV200.

Codici di riconoscimento della scheda EXP-FL-XCAN-ADV = 0x0340 = 832.

Control_Exp_Ext_IO_01.vsd

Il dispositivo esterno viene visto dal drive come se fosse la scheda di espansione EXP-D6A4R1-ADV (opzione da installare a bordo drive) ma con un differente quantitativo di I/O.

Per la gestione del dispositivo esterno si utilizzano gli stessi parametri usati per la gestione della scheda EXP-D6A4R1-ADV.

Per questo motivo non è possibile la gestione contemporanea della scheda EXP-D6A4R1-ADV e del dispositivo esterno. L'abilitazione della comunicazione con il dispositivo esterno è effettuata tramite il parametro 5480"External IO enable".

Sul drive tramite i parametri per gestione degli I/O sono disponibili:

Tipo	N°	Descrizione							
DI	5-+1	Digital input sulla scheda di regolazione del drive							
		La gestione dei DI viene realizzata tramite le liste di selezione dei							
		parametri src.							
AI	2	Analog input sulla scheda di regolazione del drive							
		La gestione degli Al viene realizzata tramite le liste di selezione dei							
		parametri src.							
DO	4	Digital output sulla scheda di regolazione del drive							
AO	2	Analog output sulla scheda di regolazione del drive							
DI	16	Digital input esterni via CAN							
		La gestione dei DI viene realizzata tramite le liste di selezione dei							
		parametri src.							
AI	2	Analog input esterni via CAN							
		La gestione degli Al viene realizzata tramite le liste di selezione dei							
		parametri src							
DO	8	Digital output esterne via CAN							
AO	2	Analog output esterne via CAN							

Tramite ambiente MDPLC è possibile:

- Leggere lo stato dei 5+1 DI sulla scheda di regolazione del drive tramite le variabili di sistema Mdplc nel gruppo DIGITAL INPUT leggere lo stato dei 16 DI esterni tramite le variabili di sistema Mdplc nel gruppo DIGITAL INPUT EXP.Tramite le variabili di sistema sysExtIODigIn0 e sysExtIODigIn1 nel gruppo EXTIO è possibile leggere lo stato di tutti i possibili 64 DI esterni.
- Leggere il valore dei 2 Al sulla scheda di regolazione del drive tramite le variabili di sistema Mdplc nel gruppo ANALOG INPUT leggere il valore dei 2 Al esterni tramite le variabili di sistema Mdplc nel gruppo ANALOG INPUT EXP. Tramite le variabili di sistema sysExtIOAnaIn0 e sysExtIOAnaIn1 nel gruppo EXTIO è possibile leggere il vaore di tutti i possibili 8 Al esterni.
- Scrivere lo stato di 4 DO sulla scheda di regolazione del drive + 8 DO esterne tramite le variabili di sistema sysWDecomp (o sysPadX). Ovviamente i parametri per la configurazione delle DO devono essere impostati sulla funzione Word Decomp (o PAD). scrivere i 56 DO esterni rimanenti tramite due variabili di sistema sysExtIODigOut0 e sysExtIODigOut1 nel gruppo EXTIO.
- Scrivere il valore di 2 AO sulla scheda di regolazione del drive + 2 AO esterne tramite le variabili di sistema sysPadX. Ovviamente i parametri per la configurazione delle AO devono essere impostati sulla funzione PAD.

scrivere i 6 AO rimanenti tramite 6 variabili di sistema sysExtIOAnaOut2 .. sysExtIOAnaOut7 nel gruppo EXTIO.

Da linea seriale o fieldbus è possibile:

 Leggere lo stato dei 5+1 DI sulla regolazione del drive tramite il parametro 1100 nel menù Monitor.

Leggere lo stato dei primi 16 DI esterni tramite il parametro 1200 "Digitali input X mon" Leggere lo stato di tutti gli I/O esterni tramite i parametri 5400 "Dig inp 0Ext mon" (ingressi digitali esterni da 1 a 32)

Leggere lo stato di tutti gli I/O esterni tramite i parametri 5402 "Dig inp 1Ext mon" (ingressi digitali esterni da 33 a 64).

- Leggere il valore dei 2 Al sulla regolazione del drive tramite i parametri 1500 "Analog input 1 mon" e 1550 "Analog input 2 mon" nel menù ANALOG INPUT.
 Leggere il valore degli 8 Al esterni tramite i parametri 5410 "Analog inp 0Ext mon", 5412, 5414, 5416, 5418, 5420, 5422, 5424 "Analog inp 7Ext mon".
 I primi due Al esterni sono anche gestiti tramite i parametri del drive quindi sono disponibili anche nei parametri 1600 "Analog input 1X mon" e 1650 "Analog input 2X mon" nel menù ANALOG INPUT.
- Scrivere lo stato delle 4 DO presenti sulla scheda di regolazione tramite il parametro 4450 "Dig word decomp" (oppure tramite i parametri PAD). Ovviamente i parametri per la configurazione delle DO devono essere impostati sulla funzione Word Decomp (o PAD).

Scrivere lo stato delle 8 DO esterni tramite il parametro 4450 "Dig word decomp" (oppure tramite i parametri PAD). Ovviamente i parametri per la configurazione delle DO devono essere impostati sulla funzione Word Decomp (o PAD).

Scrivere lo stato dei 56 DO esterni rimanenti tramite i parametri 5454 e 5456 non visibili nel menù del drive.

E' possibile leggere lo stato dei 64 Digital output (dopo merge) tramite i parametri 5450 "Dig out 0Ext mon" (uscite digitali esterne da 1 a 32) e 5452 "Dig out 1Ext mon" (uscite digitali esterne da 33 a 64) nel menù MONITOR.

• Scrivere il valore delle 2 AO presenti sulla scheda di regolazione tramite i parametri PAD. Ovviamente i parametri per la configurazione delle AO devono essere impostati sulla funzione PAD. Scrivere il valore delle 2 AO esterne tramite i parametri PAD. Ovviamente i parametri per la configurazione delle AO devono essere impostati sulla funzione PAD.

Scrivere il valore delle rimanenti 6 AO esterne tramite i parametri 5464 "Dig Analog out 0 ext", 5466, 5468, 5470, 5472 e 5474 "Dig Analog out 7 ext", nel menu ANALOG OUTPUTThe state of the 64 digital outputs can be read (after merge) via parameters 5450 "Dig out 0Ext mon" (external digital outputs from 1 to 32) and 5452 "Dig out 1Ext mon" (external digital outputs from 33 to 64) in the MONITOR menu.

Write the value of the 2 AOs present on the regulation card via the PAD parameters. The parameters used to configure the AOs must, of course, be set to the PAD function.
 Write the value of the 2 external AOs via the PAD parameters. The parameters used to configure the AOs must, of course, be set to the PAD function.
 Write the value of the remaining 6 external AOs via parameters 5464 "Dig Analog out 0 ext", 5466, 5468, 5470, 5472 and 5474 "Dig Analog out 7 ext", in the ANALOG OUTPUT menu.

La variazione del numero dei moduli IO esterni installati viene rilevata all'accensione del drive e viene segnalata con un apposito messaggio.

Eventuali ingressi analogici in corrente 0...20mA o 4...20mA devono essere configurati sul modulo IO. La configurazone viene eseguita utilizzando l'apposito configuratore dei moduli IO.

4 Descrizione cavo per collegamento CAN

A richiesta: cavo CAN pre-cablato con lunghezza di 3m. Codice: S72795

5 Parametri per EXP-FL-XCAN-ADV

Nel menu COMMUNICATION è stato aggiunto il sottomenu EXTERNAL IO

Se la scheda EXP-FL-XCAN-ADV è installata e il parametro 5480 External IO enable è impostato come "Enable", sono abilitate tutte le segnalazioni relative e vengono gestiti tutti gli eventuali problemi di comunicazione con il modulo esterno (generazione di un allarme 27 "Ext I/O fault ", con subcode diversi per indicare la causa dell'errore).

6 Gestione software del modulo esterno di I/O CANopen

Nella gestione del modulo esterno il drive ADV200 offre un sottoinsieme delle funzionalità master CANopen . In particolare è in grado di :

- Riconoscere la presenza di un singolo slave all'indirizzo 1 con baudrate di 500kbps
- Leggere alcune informazioni predefinite dallo slave tramite SDO (vedere tabella "SDO configurazione"), riconoscere e effettuare il mapping degli I/O disponibili
- Scrivere tramite SDO le impostazioni relative a HeartBeat , NodeGuarding e impostazione dei PDO
- Portare in Operational lo slave , scambiare i PDO e monitorarne lo stato

Queste funzioni sono integrate nel firmware del drive e non sono configurabili direttamente dall'utente , tuttavia utilizzano oggetti di base che dovrebbero essere sempre presenti in moduli di I/O CANopen DS401 .

Configurazioni specifiche "manufacturer" del dispositivo devono essere effettuate esternamente . Nella "**Tabella Configurazione SDO**" vengono elencati gli oggetti supportati e la sequenza con cui vengono inviati al drive . Il singolo slave collegato deve rispettare le specifiche CANopen DS301 secondo il profilo "DS401 Device profile for generic I/O modules Version 3.0.0 3 Jun 2008" e deve essere impostato in modo indipendente dal drive per operare con un baudrate di 500kbps , con indirizzo 1 .

6.1 Stati della comunicazione

All'avvio del drive ,se è presente la scheda EXP-XCAN-ADV e il parametro 5480 "External I/O enable" = "Enabled" , viene eseguita la macchina a stati indicata in figura .

Nella fase di "Init" il drive invia il messaggio NMT di Pre-Operational allo slave. Poi inizia la fase di "Config", in cui invia tramite SDO le richieste di lettura e scrittura degli oggetti nella "**Tabella Configurazione SDO**". Nel caso di risposta errata o mancanza di risposta il processo si interrompe e viene generato un allarme con un codice corrispondente all'SDO che ha un problema.

Se la sequenza di SDO viene completata si passa in modalità di "Control" con l'invio di un messaggio di NMT che porta lo slave in Operational. Da questo momento lo scambio di PDO è attivo, viene inviato un messaggio di Sync ogni 8ms e monitorato lo stato dello slave tramite HeartBeat o NodeGuarding.

Nel caso di perdita di comunicazione con lo slave viene generato l'allarme con il subcode 0 (BusLoss) e si ritorna in Init . Se la comunicazione con lo slave è stata ripristinata verrà di nuovo eseguita la macchina a stati, altrimenti il primo SDO di lettura fallirà e verrà ripetuto l'init indefinitamente

7 Configurazione custom del modulo tramite SDO

E' possibile inviare al modulo CANopen slave una configurazione specifica per impostarlo secondo valori diversi da quelli con cui viene fornito , oppure per leggere informazioni aggiuntive .

Questa configurazione non viene inviata dal drive ogni volta al modulo , ma soltanto una volta tramite una pagina dedicata integrata nel tool di configurazione Gf_eXpress.

La configurazione avviene tramite invio di SDO al modulo, e viene eseguita dal drive solo una volta ,prima della fase di configurazione. Gli SDO da inviare vengono caricati da un file di testo, editabile esternamente al Gf_eXpress con apposito formato (vedere manuale ADV200).

Oltre all'impostazione del modulo è possibile impostare alcuni parametri di comunicazione per il CANopen utilizzati dal drive . Questi parametri devono coincidere con le impostazioni dello slave , che in genere vengono effettuati con procedure che dipendono dallo slave utilizzato .

Per i moduli R-GCANs della serie GilogikII Gefran l'impostazione di baudrate e indirizzo richiede di applicare la seguente procedura , utilizzando i rotary switch X1 e X10 del modulo:

Il modulo è ora pronto per operare con baudrate = 500kbits e indirizzo = 1.

7.1 Pagina di Configurazione

La pagina è accessibile dal menu Interface Menu / EXTERNAL IO.

x) adv200asy_5_X_4.gft [EXTERNAL IO] - GF_eXpress														
🎦 🛎 🖬 🔁 🎾 🗢 R	~ 삔	<u>₽ R</u>)	X 🗈 🖂	, "Da 🗖	a 🗉 🔶 🖁 🎼	exp 🗰 🖋	0 Hii	۹ 🔬			13			
Menu X	Evt.													*
Menu selection	EXI	erna												
⊡ 🖞 MainMenu			_											
InterfaceMenu	1_100)_32.sdo	Send	Config										
WIZARD	1 500	_16.S00												
DIAGRAMS	1 500	_32.300 8 sdo												
DESTINATIONS	750-34	7.sdo												
FIELDBUS WORDS MAP	Gilogil	K.sdo												
SPEED FBK LOSS CODE	Sync P	eriod =	8ms											
Reciper	Baudra	te = 500)kbps											
Necipes	ماليه													
	Addres	s – 1												
	Numbe	r of Dig	ital Inputs:	8										
	Numbe	r of Dig	ital Outrout	e: 16										
	NULLOC			3. 10										
	INUMDe	r of Ana	alog inputs	: 2										
	Numbe	er of Ana	alog Outpu	ts: 2										
		D /144	Tedau	Cubleden	Dete	Passas				Dec he cel		Malua	Decesso	a
		R	0x1018	Ov1	Data -	- Kespon				Sync Derin	vd.	8ms	-	1
		R	0x1018	0x2	-	-				Baudrate	2	500kbps	-	1
	2	w	0x1017	0x0	0x0	-				Address		1	-	
	3	w	0x2064	0x0	0x0	-								·
	4	w	0x2070	0x0	0x6C6C696B	-								
	5	w	0x1010	0x1	0x65766173	-								
														~
Notes:														
O No alarms										Mod	lbus, A	ddr:1, Port:COM	4 🦻 CONNEC	ΓED

La pagina mostra le informazioni relative ai parametri di comunicazione CANopen master attualmente utilizzate dal drive :

Sync Period = 8ms Baudrate = 500kbps Address = 1

I valori sopra riportati corrispondono al default . Possono essere modificati caricando un file .sdo con questa pagina oppure tramite il menu SERVICE->EXT IO SERV dopo l'inserimento della password.

La pagina mostra inoltre il numero di I/O disponibili sul modulo. Nell'esempio sopra riportato:

Number of Digital Inputs: 8

Number of Digital Outputs: 16

Number of Analog Inputs: 2

Number of Analog Outputs: 2

I file di configurazione .sdo (vedere 16.2)presenti nella cartella C:\Program Files\Gefran\Catalog\Drives\Inverter\ADV200\ADV200_5_X_4\Res\Sdo vengono elencati automaticamente nella pagina .

1_1000_32.sdo 1_500_16.sdo 1_500_32.sdo 1_500_8.sdo 750-347.sdo	Send Config
GilogiK.sdo	

Selezionare "GilogiK.sdo" se il modulo interfaccia CAN esterno è prodotto da Gefran Selezionare "750-347.sdo" se il modulo interfaccia CAN esterno è il modello WAGO 750-347 Selezionare "1_500_16.sdo" se il modulo interfaccia CAN esterno è il modello Beckhoff BK5110

Selezionando il file Gilogik.sdo (utilizzabile per impostare i valori necessari al collegamento con modulo Gefran R-GCANs), vengono generate le seguenti tabelle :

N°	R/W	Index	SubIndex	Data	Response
0	R	0x1018	0x1	-	-
1	R	0x1018	0x2	-	-
2	w	0x1017	0x0	0x0	-
3	w	0x2064	0x0	0x0	-
4	w	0x2070	0x0	0x6C6C696B	-
5	w	0x1010	0x1	0x65766173	-

Sync Period 8ms - Baudrate 500kbps -	
Baudrate 500kbps -	
Address 1 -	

Per rendere attiva la configurazione del file selezionato e inviare al modulo i dati è necessario a questo punto premere il tasto

Send Config

Se la comunicazione con il modulo è attiva verrà innanzitutto mostrato il seguente messaggio

Per proseguire è necessario scollegare il cavo CAN dal modulo . Quando la comunicazione non è attiva viene poi mostrato il seguente messaggio :

Nel caso venga inviato il comando di "Send Config" quando il modulo CAN non è collegato oppure non è in comunicazione (ad esempio perché non è stato correttamente impostato il baud rate), viene mostrato il seguente messaggio:

GF_eXpress (x
Connect module if not already connected	
OK Annulla	

Collegando il modulo, il sistema è pronto ad inviare gli SDO (la macchina a stati che gestisce CANopen viene messa in attesa in Config).

Premendo "OK" inizia l'invio degli SDO . Al termine se è stato completato correttamente il risultato viene mostrato nella colonna di destra .

Esempio di configurazione completata correttamente:

	Done									
	Nº	R/W	Index	SubIndex	Data	Response		Par to set	Value	Response
	0	R	0x1018	0x1	-	0x21	1	Sync Period	8ms	Done
	1	R	0x1018	0x2	-	0x15B	1	Baudrate	500kbps	Done
	2	w	0x1017	0x0	0x0	Ok		Address	1	Done
	3	w	0x2064	0x0	0x0	Ok	1 '			
	4	w	0x2070	0x0	0x6C6C696B	Ok	1			
	5	w	0x1010	0x1	0x65766173	Ok	1			
1			-	-						

Per gli SDO in lettura (colonna R/W = R) il risultato può essere il valore letto oppure "Error" nel caso in cui l'SDO non sia stato eseguito correttamente (modulo non più connesso , oggetto non presente nell'Object Dictionary del modulo) .

Per gli SDO in scrittura il risultato è "Ok" oppure "Error" se l'SDO fallisce (oggetto non presente oppure non scrivibile) .

Nel caso in cui il parametro 5480 "External IO enable" = "Disable" l'invio degli SDO non viene eseguito e la colonna response mostra il messaggio "Skipped"

Per i parametri "Sync Period", "Baudrate", "Address" (che non corrispondono a SDO ma sono soltanto scritti nel drive) la colonna di destra è "Error" solo se la scrittura del parametro tramite Gf_eXpress fallisce

Esempio di configurazione non completata :

_			
-	-	-	-
D	υ	п	е
_	_		-

Nº	R/W	Index	SubIndex	Data	Response
0	R	0x1018	0x1	-	0x21
1	R	0x1018	0x2	-	0x15B
2	w	0x1017	0x0	0x0	Ok
3	w	0x2064	0x0	0x0	Error
4	w	0x2070	0x0	0x6C6C696B	Error
5	w	0x1010	0x1	0x65766173	Ok

Par to set	Value	Response
Sync Period	8ms	Done
Baudrate	500kbps	Done
Address	1	Done

Solo nel caso in cui le colonne "Response" non presentino messaggi "Error" o "Skipped" si può considerare completa la configurazione, altrimenti è necessario ricercare la causa di errore, verificando il file .sdo rispetto alla documentazione del modulo, la correttezza dei dati e la rete CAN.

Al termine della configurazione, allo scopo di rendere sempre attive le impostazioni, viene richiesto di salvare i parametri:

Aspettare la conferma del salvataggio e premere OK

GF_eXpress	<u> </u>
Parameters succes	sfully saved
	ок

A questo punto la macchina a stati riprende normalmente il suo ciclo e il dispositivo viene di nuovo portato in Operational automaticamente . Se la configurazione non è ancora corretta viene generato di nuovo l' allarme "Opt ExtIO".

8 Formato file configurazione SDO

E' un file di testo in cui sono contenute due colonne separate da una virgola . Per ogni riga , la prima colonna contiene i primi 4 byte del messaggio SDO in formato esadecimale

, la seconda colonna contiene i rimanenti 4 byte .

Ad esempio, per leggere l'oggetto con index 1000h subindex 0 il formato è: 0x00100040,0

E' possibile inserire commenti iniziando la riga con i caratteri "//" . Di seguito è mostrato file con esempi di lettura , scrittura e commenti :

//Configurazione per impostare l'R-GCANs per il riconoscimento automatico dei moduli
//Riavviare il modulo dopo avere inviato gli SDO
0x01101840,0
0x02101840,0
0x0010172B,0
0x0020642B,0
0x00207023,0x6c6c696b
0x01101023,0x65766173
// N.B.: SyncPeriod deve essere 2^n e maggiore o uguale a 16
SyncPeriod=8
//N.B.:Baudrate deve essere 125,250,500,1000 , default = 500
Baudrate=500
Address=1

8.1 Impostazione parametri comunicazione CANopen master del drive

Tramite il file di configurazione possono essere anche modificate le impostazioni di comunicazione CANopen , in particolare il baudrate , l'indirizzo del nodo slave e il communication cycle (periodo del messaggio di sync).

Nel file è quindi possibile inserire dei comandi specifici , che vengono salvati con i parametri del drive .

Il comando per il baudrate è il seguente :

Baudrate=500

Deve essere indicato in kbps . I valori ammessi sono 125, 250, 500, 1000 , default è 500. Altri valori non sono accettati.

L'indirizzo del nodo può essere modificato con il comando Address=1

Per il communication cycle è necessario inserire un valore che sia un potenza di 2 . Il valore minimo è 8 , il massimo 256 .

SyncPeriod =8

Queste impostazioni sono opzionali , possono essere presenti tutte oppure solo qualcuna . E' importante tenere presente che vengono salvate nella memoria del drive e non in quella del modulo , quindi devono essere ripristinate nel caso in cui i parametri del drive vengono rimessi al default .

Le impostazioni sono anche accessibili nel menu SERVICE->EXT IO SERV dopo inserimento di password (vedere paragrafo Parametri Service)

9 Fast link - Introduzione

In applicazioni dove sono presenti più drive che devono lavorare coordinati tra loro è necessario in diversi casi trasmettere velocemente le informazioni fra loro e realizzare sincronizzazioni. Il passaggio delle informazioni può essere realizzato con un bus di comunicazione veloce chiamato Fast Link attraverso l'uso della scheda EXP-FL-XCAN-ADV applicata ad ogni drive. Lo scambio dati può essere monodirezionale o bidirezionale. Utilizzando la modalità monodirezionale, il drive designato come dispositivo master trasmette informazioni ai drive slave. Utilizzando la modalità bidirezionale (dalla versione firmware ADV200 V7), il drive designato come dispositivo master trasmette, ritrasmettono le informazioni al master.

La modalità di funzionamento monodirezionale (one way) prevede due varianti di funzionamento. Nella prima variante il master passa al primo slave il frame dati. Il primo slave prende tutti i dati del frame e passa al drive slave successivo lo stesso frame senza apportare nessuna modifica. Lo stesso meccanismo è ripetuto da tutti i drive slave.

Nella seconda variante il master passa al primo slave il frame dati. Il primo slave prende tutti i dati del frame e passa al drive slave successivo il frame dati sostituendone una parte. Lo stesso meccanismo è ripetuto da tutti i drive slave.

Modalità Fast Link– Monodirezionale

FastLink Mode = One way

Control_Fast_Link_04.vsd

- Supporto fisico utilizzato:Fibra Ottica in configurazione "Daisy Chain"
- Numero di partecipanti: 16 (1 Master + 15 slaves)
- Il Master può trasferire allo slave fino a 8 parametri a 32 bit.
- Ogni Slave è in grado di sostituire fino a 4 parametri per lo Slave successivo
- Trasmissione Dati: 250micros
- Task di sincronizzazione: da 125ms a 1ms
- Massima distanza tra nodi: 5m (con l'uso di cavo a fibra ottica standard)

Modalità Fast Link – Bidirezionale

- Numero di partecipanti: 16 (1 master + 15 slave)
- In ogni ciclo di comunicazione uno slave ritrasmette al master fino a 2 parametri (32 bit).
- 4 canali di monitor slave programmabili nel master che utilizzano l'FW di base
- 32 canali di monitor programmabili nel master che utilizzano l'MDPLC

Utilizzando la modalità bidirezionale, il drive identificato come master trasmette i dati ai drive slave, quindi i drive slave ritrasmettono ciclicamente le informazioni al master.

La modalità di trasmissione delle informazioni dal master allo slave è chiamata "**Forward**" e quella dallo slave al master "**Reverse**".

La comunicazione **Forward** è la stessa indicata nella modalità di funzionamento monodirezionale. La modalità di funzionamento bidirezionale è un'estensione della modalità monodirezionale. Ogni drive slave è in grado di trasmettere due dati di informazioni a 32 bit.

- Comunicazione Forward:

Ogni 250 sec il master trasmette il frame dati al primo slave. Il primo slave prende tutti i dati dal frame e trasmette all'unità successiva lo stesso frame o trasmette i dati con la capacità di sostituire parte del frame dati (come per la modalità monodirezionale). Lo stesso meccanismo viene ripetuto per tutti gli slave.

- Comunicazione Reverse:

L'ultimo drive slave sulla rete ritrasmette il frame dati al master.

Nel frame dati trasmesso dal master al primo slave è indicato quale dispositivo slave deve rispondere. Se viene selezionato un drive slave, questo includerà le informazioni che deve trasmettere al master. Se non viene selezionato, trasmetterà il frame dati senza apportare alcuna modifica. L'ultimo drive slave ritrasmette il frame dati al master.

Il master trasmette un frame dati ogni 250 sec, in ogni frame dati viene richiesta una risposta dagli

slave.

Con un parametro appropriato è possibile configurare il numero "N" di slave connessi. Ogni slave può trasmettere le sue informazioni ogni 250 sec * N.

Poiché il numero massimo di slave è 15, nel peggiore dei casi ogni slave può trasmettere le sue informazioni ogni 3,75 msec.

Ogni drive slave è in grado di trasmettere due dati di informazioni a 32 bit. Il drive master può essere impostato per il numero di slave della rete e per gli slave che devono rispondere.

Ogni slave con i parametri appropriati può essere configurato per trasmettere informazioni al master.

Il drive master riceve tutte le risposte dagli slave e fornisce 32 variabili di sistema, dove tramite l'applicazione MDPIc è possibile leggere le informazioni ricevute da ogni slave.

Il master è dotato di 4 parametri di monitor dove è possibile leggere le informazioni ricevute dagli slave. Con appositi parametri, è possibile selezionare lo slave per il quale si devono monitorare i dati ricevuti.

Il tool SoftScope può essere utilizzato per monitorare alcuni o tutti questi 4 canali.

Anche nel caso di comunicazione bidirezionale, sono previste due modalità di funzionamento:

Modalità 1:

La modalità bidirezionale viene gestita in due fasi. Nella prima fase, il master trasmette il frame dati all'indirizzo slave che deve rispondere. Il frame dati viene ripetuto a tutti gli slave della rete come per la modalità monodirezionale.

Nella seconda fase lo slave interrogato trasmette le sue informazioni allo slave successivo nella rete. Il frame dati viene ripetuto a tutti gli slave come per la modalità monodirezionale. Il drive master tramite il frame dati è in grado di riconoscere chi possiede i dati e raccoglie in un'area riservata le informazioni di ogni drive slave.

Nel drive master, utilizzando appositi parametri è possibile selezionare quali informazioni e quale drive mostrare nei 4 parametri di monitor.

Nel master, tutte le risposte dei vari slave sono disponibili tramite variabili di sistema MDPIc.

Modalità 2:

La modalità bidirezionale trasmette le informazioni utilizzando la comunicazione Forward dal master a tutti gli slave nella rete e la comunicazione Reverse dall'ultimo slave al master. In entrambi i casi i drive slave sono in grado di sostituire parte del frame dati.

Le applicazioni tipiche che utilizzano Fast Link sono:

- Asse elettrico
- Sistemi multimotore
- Sistemi helper
- Droop control
- Supporti fisici utilizzati: fibra ottica in configurazione "daisy chain "
- Numero di partecipanti: 16 (1 master + 15 slave)
- Il master può trasferire allo slave fino a 8 parametri a 32 bit.
- Ogni slave è in grado di sostituire fino a 4 parametri per lo slave successivo
- Trasmissione dati: 250 micros
- Task di sincronizzazione: da 125 ms a 1 ms , i dati utili vengono scambiati con il fast task e quindi a 1 msec , il task a 125 è utilizzato soltanto per la sincronizzazione.
- Massima distanza tra nodi: 5 m (con l'uso di cavo a fibra ottica standard) .
- Ogni slave può trasferire al master 2 parametri e 32 bit (solo per bidirezionale)

9.1 Connettore FastLink

La comunicazione Fast Link (connettore XF0 = FL Fast Link) consente di connettere diversi drive per eseguire processi di sincronizzazione.

È possibile connettere i drive TPD32-EV + APC300 e/o ADV200 fino a 1 master e 15 slave.

Monodirezionale:

- 1 master 15 slave
- Il master trasmette 8 parametri a 32 bit
- Ogni slave può sostituire fino a 4 parametri per lo slave successivo

Bidirezionale

- 1 master 15 slave
- In ogni ciclo di comunicazione uno slave ritrasmette al master 2 parametri a 32 bit
- 4 canali di monitor slave programmabili sul master nell'FW di base
- 32 canali di monitor nel master disponibili nell'MDPLC

Trasferimento del Riferimento di Velocità in un sistema multi motore

Control_Fast_Link_01.vsd

In una linea con più assi motorizzati, il drive master riceve un set di velocità sul quale genera un profilo con rampa in modo da ottenere un riferimento di velocità.

Il master trasmette poi il riferimento di velocità agli slave utilizzando il bus sincrono veloce "Fast Link". Tramite le funzioni standard del drive, gli slave sono in grado di manipolare il riferimento di velocità ottenuto in modo da calibrare la velocità del motore in funzione delle caratteristiche meccaniche dell'asse controllato.

Su ogni slave è anche possibile definire se utilizzare il dato ricevuto dal master con il segno positivo , selezionando "FL Fw N mon" nelle liste di selezione , oppure con il segno negativo , con "FL Fw N inv mon".

La modalità di gestione del riferimento sopra descritta è nominata sistema a "riferimento diretto".

E' inoltre possibile realizzare un sistema a "cascata di riferimenti" in modo che ogni slave trasmetta al successivo la sua velocità attuale eventualmente "manipolata" rispetto a quella ricevuta dal master.

Nel sistema a "cascata di riferimenti" il master passa al primo slave il frame dati. Il primo slave prende tutti i dati del frame e passa al drive slave successivo il frame dati sostituendone una parte. Lo stesso meccanismo è ripetuto da tutti i drive slave.

Per ulteriori informazioni sul sistema di sostituzione dei dati frame è necessario fare riferimento al manuale di istruzione del drive ADV200.

Tramite il parametro 5702 "FL sync slave type" è possibile definire la modalità di sincronizzazione fra i drive.

Nel caso vegano sincronizzate le varie task dei drive, allora il riferimento di velocità generato dal master viene gestito dallo slave con un ritardo di 1msec ripetitivo e costante.

Se viene sincronizzata la sola task di PWM, allora il riferimento di velocità generato dal master viene gestito dallo slave con un ritardo variabile tra 250micros e 1,250msec. E' comunque importante osservare che il ritardo dipende dall'attivazione delle task all'accensione dei drive e quindi, una volta che i drive sono stati alimentati, il ritardo vine mantenuto costante. Il ritardo potrà poi variare al successivo spegnimento e riaccensione.

FastLink Mode = One way

Trasferimento del Riferimento di Coppia tra master e slave: funzione "Helper"

Control_Fast_Link_01.vsd

L'applicazione "Helper" viene utilizzata quando gli inverter comandano uno o più motori collegati meccanicamente fra di loro e il carico deve essere distribuito equamente fra tutti i partecipanti.

La funzione "Helper" viene inoltre utilizzata per il controllo di motori a doppio o triplo avvolgimento (separato e isolato) tramite due o tre inverter.

Il drive master è controllato in velocità mentre i drive slave sono controllati in Coppia.

Al drive master viene fornito il riferimento di rampa tramite ingresso analogico o bus di campo. Il master trasmette poi il suo Riferimento di Coppia agli slave utilizzando il bus sincrono veloce "Fast Link".

Così facendo tutti i motori erogano la stessa coppia e si dividono esattamente il carico totale.

In alcuni casi la configurazione meccanica prevede che il motore slave debba ruotare con senso inverso rispetto al master e conseguentemente debba essere invertito il senso di coppia. Su ogni slave è quindi possibile definire se utilizzare il dato ricevuto dal master con il segno positivo , selezionando "FL Fw N mon" nelle liste di selezione , oppure con il segno negativo , con "FL Fw N inv mon".

"FastLink fault"

Se la scheda EXP-FL-XCAN-ADV è installata nel drive allora sono abilitate tutte le segnalazioni relative a problemi di comunicazione con Fastlink e vengono gestite tramite la generazione di un allarme 28 "FastLink fault", con subcode diversi per indicare la causa dell'errore.

Il drive, quando rileva dei malfunzionamenti sul FastLink, si predispone per attivare allarme "FastLink fault".

Con il comando "FL fault enable src" è possibile selezionare se la rilevazione di un malfunzionamento deve generare allarme.

Nella configurazione di default la generazione dell'allarme è attiva.

Modificando la configurazione del parametro "FL fault enable src" è possibile controllare le fasi in cui la generazione dell'allarme è attiva.

Ad esempio collegando il parametro "FL fault enable src" ad "Enable state mon" è possibile abilitare la generazione dell'allarme "FastLink fault" nella fase in cui il drive è abilitato.

Negli impianti dove il power-off dei drive non è contemporaneo accade che alcuni drive rilevano un malfunzionamento del FastLink e generano allarme FastLink.

Con questo parametro è possibile disabilitare l'allarme al Power-off collegando il parametro "FL fault enable src" ad "Enable state mon".

Quando il drive rileva un problema di comunicazione con FastLink, mantiene l'ultimo frame dati ricevuto correttamente.

Per ulteriori informazioni sui codici di allarme FastLink è necessario fare riferimento al manuale di istruzione del drive ADV200.

Cavo di connessione Fast Link

Sono disponibili cavi per la comunicazione Fast Link con lunghezze da 1-2-3-5m

Tempi di aggiornamento delle varie funzioni

Lista delle informazioni disponibili come uscite per FastLink

IPA	Description	Update Time
6000	Null	Constant
6002	One	Constant
626	Ramp ref out mon	8 msec
628	Ramp setpoint	8 msec
760	Ramp out mon	8 msec
664	Speed setpoint	1 msec
260	Motor speed	125 micro sec
262	Motor speed nofilter	125 micro sec
2150	Encoder 1 speed	125 micro sec
5150	Encoder 2 speed	125 micro sec
250	Output current	125 micro sec
252	Output voltage	125 micro sec
254	Output frequency	125 micro sec
280	Torque current ref	125 micro sec
282	Magnet current ref	125 micro sec
284	Torque current	125 micro sec
286	Magnet current	125 micro sec
2360	Torque lim Pos Inuse	8 msec
2362	Torque lim Neg Inuse	8 msec

2386	Torque ref %	1 msec
2388	Torque ref nofilter	125 micro sec
270	DC link voltage	125 micro sec
2162	Encoder 1 position	125 micro sec
2154	E1 Virtual position	125 micro sec
2156	E1 Revolutions	125 micro sec
3006	Speed ratio out mon	1 msec
3070	Droop out mon	1 msec
852	Multi ref out mon	8 msec
870	Mpot setpoint	8 msec
894	Mpot output mon	8 msec
920	Jog output mon	8 msec
3104	Inertia comp mon	1 msec
1500	Analog input 1 mon	1 msec
1550	Analog input 2 mon	1 msec
1600	Analog input 1X mon	1 msec
1650	Analog input 2X mon	1 msec
368	Drive overload accum	8 msec
3212	Motor overload accum	8 msec
3260	Bres overload accum	8 msec
272	Heatsink temperature	8 msec
1060	Sequencer status	8 msec
4432	Word comp mon	1 msec
3446	Powerloss nextratio	1 msec
4372	DS402 status word	8 msec
4394	PFdrv status word 1	8 msec
4396	PFdrv status word 2	8 msec
4024	Fieldbus M->S1 mon	1 msec
4034	Fieldbus M->S2 mon	1 msec
4044	Fieldbus M->S3 mon	1 msec
4054	Fieldbus M->S4 mon	1 msec
4064	Fieldbus M->S5 mon	1 msec
4074	Fieldbus M->S6 mon	1 msec
4084	Fieldbus M->S7 mon	1 msec
4094	Fieldbus M->S8 mon	1 msec
4104	Fieldbus M->S9 mon	1 msec
4114	Fieldbus M->S10mon	1 msec
4124	Fieldbus M->S11mon	1 msec
4134	Fieldbus M->S12mon	1 msec
4144	Fieldbus M->S13mon	1 msec
4154	Fieldbus M->S14mon	1 msec
4164	Fieldbus M->S15mon	1 msec
4174	Fieldbus M->S16mon	1 msec
3700	Pad 1	1 or 8 msec
3702	Pad 2	1 or 8 msec
3704	Pad 3	1 or 8 msec
3706	Pad 4	1 or 8 msec
3708	Pad 5	1 or 8 msec
3710	Pad 6	1 or 8 msec
3712	Pad 7	1 or 8 msec
3714	Pad 8	1 or 8 msec
3716	Pad 9	1 or 8 msec
3718	Pad 10	1 or 8 msec

3720	Pad 11	1 or 8 msec
3722	Pad 12	1 or 8 msec
3724	Pad 13	1 or 8 msec
3726	Pad 14	1 or 8 msec
3728	Pad 15	1 or 8 msec
3730	Pad 16	1 or 8 msec
4770	First alarm	8 msec
4840	Alarm lo state	8 msec
4842	Alarm hi state	8 msec
1100	Digital input mon	1 msec
1200	Digital input X mon	1 msec
5008	Test gen out	8 msec
5750	FL Fw 1 mon	250 micro sec
5752	FL Fw 2 mon	250 micro sec
5754	FL Fw 3 mon	250 micro sec
5756	FL Fw 4 mon	250 micro sec
5758	FL Fw 5 mon	250 micro sec
5760	FL Fw 6 mon	250 micro sec
5762	FL Fw 7 mon	250 micro sec
5764	FL Fw 8 mon	250 micro sec

Lista dei src dove è possibile collegare ingressi da FastLink

IPA	Description	Update Time
960	Set speed ref src	1 msec
3660	Compare input 1 src	8 msec
3662	Compare input 2 src	8 msec
4340	DS402 cw src	8 msec
4346	PFdrv cw 1 src	8 msec
4348	PFdrv cw 2 src	8 msec
5730	FL Fw 1 src	250 micro sec
5732	FL Fw 2 src	250 micro sec
5734	FL Fw 3 src	250 micro sec
5736	FL Fw 4 src	250 micro sec
610	Ramp ref 1 src	8 msec
612	Ramp ref 2 src	8 msec
614	Ramp ref 3 src	8 msec
650	Speed ref 1 src	1 msec
652	Speed ref 2 src	1 msec
832	Multi ref 0 src	8 msec
834	Multi ref 1 src	8 msec
2370	Torque lim neg src	125 micro sec
2358	Torque lim pos src	125 micro sec
2216	Gain adapt src	8 msec
2382	Torque ref 1 src	125 micro sec
2492	Vf scale src	1 msec
3002	Speed ratio src	1 msec
4452	Word decomp src	1 msec

GEFRAN DEUTSCHLAND GMBH

Philipp-Reis-Straße 9a D-63500 Seligenstadt Ph. +49 (0) 61828090 Fax +49 (0) 6182809222 vertrieb@gefran.de

SIEI AREG - GERMANY

Gottlieb-Daimler Strasse 17/3 D-74385 - Pleidelsheim Ph. +49 (0) 7144 897360 Fax +49 (0) 7144 8973697 info@sieiareg.de

SENSORMATE AG

Steigweg 8, CH-8355 Aadorf, Switzerland Ph. +41(D)52-2421818 Fax +41(D)52-3661884 http://www.sensormate.ch

GEFRAN FRANCE SA

PARC TECHNOLAND Bătiment K - ZI Champ Dolin 3 Allée des Abruzzes 69800 Saint-Priest Ph. +33 (0) 478770300 Fax +33 (0) 478770320 commercial@gefran.fr

GEFRAN BENELUX NV

ENA 23 Zone 3, nr. 3910 Lammerdries-Zuid 14A B-2250 OLEN Ph. +32 (0) 14248181 Fax +32 (0) 14248180 info@gefran.be

GEFRAN UK LTD

Clarendon Court Winwick Guay Warrington WA2 80P Ph. +44 (0) 8452 604555 Fax +44 (0) 8452 604555 sales@gfran.co.uk

GEFRAN MIDDLE EAST ELEKTRIK VE ELEKTRONIK SAN. VE TIC. LTD. STI

Yesilkoy Mah. Ataturk Cad. No: 12/1 B1 Blok K:12 D: 389 Bakirkoy /Istanbul TURKIYE Ph. +90212 465 91 21 Fax +90212 465 91 22

GEFRAN SIEI

Drives Technology Co., Ltd No. 1285, Beihe Road, Jiading District, Shanghai, China 201807 Ph. +86 21 69169898 Fax +86 21 69169333 info@gefran.com.cn

GEFRAN SIEI - ASIA

31 Ubi Road 1 #02-07, Aztech Building, Singapore 408694 Ph. +65 6 8418300 Fax +65 6 7428300 info@gefran.com.sg

GEFRAN INDIA

Survey No. 191/A/1, Chinchwad Station Road, Chinchwad, Pune-411033, Maharashtra Ph. +91 20 6614 6500 Fax +91 20 6614 6501 gefran.india@gefran.in

GEFRAN INC.

8 Lowell Avenue WINCHESTER - MA 01890 Toll Free 1-888-888-4474 Fax +1 (781) 7291468 info.us@gefran.com

GEFRAN BRASIL

ELETROELETRôNICA Avenida Dr. Altino Arantes, 377 Vila Clementino 04042-032 SÂO PAULO - SP Ph. +55 (0) 1155851133 Fax +55 (0) 1132974012 comercial@gefran.com.br

GEFRAN

GEFRAN S.p.A.

Via Sebina 74 25050 Provaglio d'Iseo (BS) ITALY Ph. +39 030 98881 Fax +39 030 9839063 info@gefran.com www.gefran.com

Drive & Motion Control Unit

Via Carducci 24 21040 Gerenzano [VA] ITALY Ph. +39 02 967601 Fax +39 02 9682653 infomotion@gefran.com

Technical Assistance : technohelp@gefran.com

Customer Service :

motioncustomer@gefran.com Ph. +39 O2 96760500 Fax +39 O2 96760278